[1] |
涓浗浜烘皯瑙f斁鍐涙€昏澶囬儴鍐涗簨璁粌鏁欐潗缂栬緫宸ヤ綔濮斿憳浼? 椋炶鍣?绯荤粺杈ㄨ瘑瀛m]. 鍖椾含: 鍥介槻宸ヤ笟鍑虹増绀? 2003.
|
[2] |
绋?棰? 闉?骞? 鍚?宄? 璐熻嵎妯″瀷鍙傛暟杈ㄨ瘑鐨勭矑瀛愮兢浼樺寲娉曞強鍏?涓庡熀鍥犵畻娉曟瘮杈僛j]. 鐢靛姏绯荤粺鑷姩鍖? 2003, 27(11): 25-29.
|
[3] |
浠诲瓙姝? 浼?鍐? 鑷€傚簲閬椾紶绠楁硶鐨勬敼杩涘強鍦ㄧ郴缁熻鲸璇嗕腑搴旂敤鐮旂┒ [j]. 绯荤粺浠跨湡瀛︽姤, 2006, 18(1): 41-43, 66.
|
[4] |
鍒橀噾鐞? 娌堟檽钃? 璧?榫? 绯荤粺杈ㄨ瘑鐞嗚鍙?matlab 浠跨湡[m]. 鍖椾含锛?鐢靛瓙宸ヤ笟鍑虹増绀? 2013.
|
[5] |
arora s, singh s. butterfly optimization algorithm: a novel approach for global optimization[j]. soft computing, 2019, 23(3): 715-734.
|
[6] |
arora s, singh s. butterfly algorithm with levy flights for global optimization[c]//2015 international conference on signal processing, computing and control (ispcc), september 24-26, 2015, waknaghat, india. ieee, 2015: 220-224.
|
[7] |
arora s, singh s. an improved butterfly optimization algorithm for global optimization[j]. advanced science, engineering and medicine, 2016, 8(9):711-717.
|
[8] |
arora s, singh s. an effective hybrid butterfly optimization algorithm with artificial bee colony for numerical optimization[j]. international journal of interactive multimedia and artificial intelligence, 2017, 4(4): 14.
|
[9] |
kazimipour b, li x d, qin a k. a review of population initialization techniques for evolutionary algorithms[c]//2014 ieee congress on evolutionary computation (cec), july 6-11, 2014, beijing, china. ieee, 2014:2585-2592.
|
[10] |
宕旈洩濠? 鏉?棰? 鑼冨槈璞? 鍏ㄥ眬娣锋矊铦欒潬浼樺寲绠楁硶[j]. 涓滃寳澶у瀛︽姤 (鑷劧绉戝鐗?, 2020, 41(4): 488-491, 498.
|
[11] |
鍚存.鍫? 椋炶鎺у埗绯荤粺[m]. 2 鐗? 鍖椾含: 鍖椾含鑸┖鑸ぉ澶у鍑虹増绀? 2013.
|
[12] |
klein v, morelli e a. aircraft system identification: theory and practice[m]. reston: american institute of aeronautics and astronau鍘?tics, 2006.
|
[13] |
寮犱笘寮? 鏇茬嚎鍥炲綊鐨勬嫙鍚堜紭搴︽寚鏍囩殑鎺㈣[j]. 涓浗鍗敓缁熻, 2002, 19(1): 9-11.
|
[14] |
璋?鍏? 楂樹笢绾? 闈炵嚎鎬у洖褰掓柟娉曠殑搴旂敤涓庢瘮杈僛j]. 鏁板鐨勫疄璺典笌璁?璇? 2009, 39(10): 117-121.
|